Clinical Policy: Homocysteine Testing
Reference Number: PA.CP.MP.121
Effective Date: 08/16
Last Review Date: 08/18

Description
Homocysteine is a nonproteinogenic amino acid that is generated during the conversion of methionine to cysteine. Mutations of the enzymes within the biochemical pathways that regulate homeostatic homocysteine levels are associated with risk factors for various diseases, including venous thromboembolism. Supplementation of folic acid, vitamin B6, and vitamin B12 are known to modulate homocysteine levels, given the interplay between the folate cycle and metabolism. This policy describes the medical necessity requirements for testing levels of homocysteine.

Policy/Criteria
I. It is the policy of PA Health & Wellness that homocysteine testing is medially necessary for the following indications:
 A. Borderline vitamin B12 deficiency;
 B. Homocystinuria caused by cystathionine beta-synthase deficiency;
 C. Idiopathic venous thromboembolism, recurrent venous thromboembolism, thrombosis occurring at < 45 years of age, or thrombosis at an unusual site.

II. It is the policy PA Health & Wellness that homocysteine testing is considered investigational for the following indications:
 A. Cardiovascular risk testing;
 B. For the testing of all other conditions.

Background
Homocysteine is a naturally occurring intermediary amino acid that is generated during the conversion of methionine to cysteine. While homoeostatic plasma levels of homocysteine typically range at low micro molar concentrations, epistatic mutations and other aberrant modifications of the metabolic pathways modulate homocysteine levels.\(^1\) The metabolic pathway of homocysteine consists of upstream remethylation pathways and a downstream transsulfuration pathway. Notably, mutations in cystathionine-β-synthase, a key enzyme of the transsulfuration pathway, are associated with excess levels of homocysteine and premature thrombotic events.\(^1\) Furthermore, a common mutation at a single nucleotide (677C\(\rightarrow\)T) in the gene encoding 5,10-metheneteratidahydrolate reductase, an enzyme in the folate cycle whose byproducts are necessary cofactors in the metabolism of homocysteine, affects homoeostatic levels of homocysteine. This mutation predisposes the individual to low folate plasma levels, and consequently a status of hyperhomocysteine.\(^2\)

Changes in the plasma homocysteine levels can result from alterations in folate or vitamin B6 or vitamin B12.\(^7\) A meta-analysis of 25 randomized clinical trials demonstrated that daily supplementation of \(\geq 0.8\) mg folic acid is sufficient to achieve the maximal reduction in plasma...
Homocysteine levels. Moreover, basal levels of homocysteine range between 5-15 μmol/L, while moderate hyperhomocysteine concentrations are 15-30 μmol/L, intermediate levels are 30-100 μmol/L and severe hyperhomocysteine concentrations are >100 μmol/L.7

Hyperhomocysteine was identified as an independent risk factor for ischemic heart disease and vascular disease.3,4 Initial reports hypothesized that heterozygosity of cystathionine-β-synthase contributed to the accumulation of homocysteine, and these reports were corroborated by later meta-analyses.3,4 However, this rationale has not been corroborated, as two randomized controlled trials, the Heart Outcomes Prevention Evaluation 2 (Hope-2) and the Norwegian Vitamin (NORVIT) trials simultaneously demonstrated no effect from lowering homocysteine levels, by way of folic acid or vitamin B6 supplementation, on cardiovascular outcomes.5,6

A 2017 Cochrane review of homocysteine-lowering interventions for preventing cardiovascular events concluded that B-vitamin supplements lowered homocysteine but did not reduce risk of myocardial infarction or reduce death rates in patients at risk of, or living with cardiovascular disease.11 Compared with placebo, lowered homocysteine resulting from B-vitamin supplementation combined with antihypertensive medications produced uncertain benefit in preventing stroke.

Hyperhomocysteine is a risk factor for venous thromboembolic disease. Ray et al performed a meta-analysis of 9 case control studies measuring fasting plasma homocysteine, as well as 5 studies measured after methionine loading. All 9 studies demonstrated a similar trend in the levels and the associated risk for venous thromboembolism; following methionine loading, the trend increased toward the risk of venous thromboembolism.9,10

High levels of serum homocysteine have been proposed as a risk factor for dementia, and several studies have evaluated the role of B-vitamin supplementation in lowering homocysteine and thus improving cognitive function, or preventing cognitive decline. A meta-analysis by Clarke et al. determined that B-vitamin supplementation significantly reduced homocysteine levels, but did not have a clinically significant effect on global cognitive function or on cognitive aging.12 In contrast, a 2018 International Consensus Statement argues for the presence of a causal relationship between homocysteine levels and cognitive decline, and for screening for hyperhomocysteine and treatment with B vitamins in patients presenting to memory clinics.13 However, the consensus body notes that 76% of the participants in the trials in the largest meta-analysis on the topic did not include baseline measures of cognitive function, and thus couldn’t adequately compare the intervention group to the placebo group. Furthermore, they point to the lack of an established homocysteine threshold for intervention, which reduces the clinical relevance of the measure.

Coding Implications
This clinical policy references Current Procedural Terminology (CPT®). CPT® is a registered trademark of the American Medical Association. All CPT codes and descriptions are copyrighted 2018, American Medical Association. All rights reserved. CPT codes and CPT descriptions are from the current manuals and those included herein are not intended to be all-inclusive and are included for informational purposes only. Codes referenced in this clinical policy are for informational purposes only. Inclusion or exclusion of any codes does not guarantee coverage.
Clinical Policy
Homocysteine Testing

Providers should reference the most up-to-date sources of professional coding guidance prior to the submission of claims for reimbursement of covered services.

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83090</td>
<td>Homocysteine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICD-10-CM Diagnosis Codes that Support Coverage Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICD-10-CM Code</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>D51.0-D51.9</td>
</tr>
<tr>
<td>E53.8</td>
</tr>
<tr>
<td>E72.10</td>
</tr>
<tr>
<td>E72.11</td>
</tr>
<tr>
<td>E72.19</td>
</tr>
<tr>
<td>I26.01-I26.99</td>
</tr>
<tr>
<td>I81</td>
</tr>
<tr>
<td>I82.0-I82.91</td>
</tr>
<tr>
<td>Z86.711</td>
</tr>
<tr>
<td>Z86.718</td>
</tr>
</tbody>
</table>

Reviews, Revisions, and Approvals

Policy developed: 04/18
Background updated. References reviewed and updated: 06/18

References
CLINICAL POLICY
Homocysteine Testing
Press D, Alexander M. Prevention of dementia. UpToDate. Dekosky ST, Schmader KE (Eds.) Accessed May 9, 2018