Clinical Policy: Mechanical Stretching Devices for Joint Stiffness and Contracture Reference Number: PA.CP.MP.144 Last Review Date: 09/18 Coding Implications Revision Log Effective Date: 09/18 ### **Description** Mechanical stretching devices are used for the prevention and treatment of joint contractures of the extremities, with the goal to maintain or restore range of motion (ROM) to the joint. A variety of mechanical stretching devices are available for extension or flexion of the shoulder, elbow, wrist, fingers, knee, ankle, and toes. These devices are generally used as adjunct treatment to physical therapy and/or exercise. ## Policy/Criteria - **I.** It is the policy of PA Health & Wellness (PHW)[®] that the low-load prolonged-duration stretch (LLPS) device /dynamic stretch device is **medically necessary** for rehabilitation of extensor tendon injury of the finger. - **II.** It is the policy of PHW that the LLPS device for any other indication or any other joint is considered not medically necessary. - **III.** It is the policy of PHW that static progressive (SP) stretch devices and the patient-actuated serial stretch (PASS) device for any indication are considered not medically necessary. ### **Background** A joint contracture is characterized by a chronically reduced ROM secondary to structural changes in non-bony tissues, including muscle, tendons, ligaments, and skin. Prolonged immobilization of joints following surgery or trauma is the most common cause of joint contractures. A number of different modalities are used to treat or prevent joint contractures. Mechanical stretching devices have been investigated for the treatment of joint contractures. The use of these devices is based on the theory that passive motion early in the healing process can promote movement of the synovial fluid, and thus promote lubrication of the joint; stimulate the healing of articular tissues; prevent adhesions and joint stiffness; and reduce edema without interfering with the healing of incisions or wounds over the moving joint. Several types of devices exist, including low-load prolonged duration stretch devices (also referred to as dynamic splinting), static progressive stretch devices, and patient-actuated serial stretch (PASS) (also known as patient-directed serial stretch) devices. LLPS devices permit resisted active and passive motion (elastic traction) within a limited range. LLPS devices maintain a set level of tension by means of incorporated springs. PASS devices permit resisted active and passive motion within a limited range utilizing pneumatic or hydraulic systems that can be adjusted by the patient. The extensionaters use pneumatic systems while the flexionaters use hydraulic systems. These devices require custom fitting. SP stretch devices hold the joint in a set position but allow for manual modification of the joint angle and may allow for active # pa health & wellness ### **CLINICAL POLICY** ## **Mechanical Stretching Devices for Joint Stiffness and Contracture** motion without resistance (inelastic traction). This type of device itself does not exert a stress on the tissue unless the joint angle is set at the maximum ROM. Dynamic splinting is commonly used in the post-operative period for the prevention or treatment of motion stiffness/loss in the knee, elbow, wrist or finger. Peer reviewed studies investigating dynamic splinting are limited. The best evidence is available in studies evaluating LLPS following extensor injury. Results from a small, prospective, randomized trial comparing dynamic splinting to static splinting suggest that dynamic splinting of complex lacerations of the extensor tendons in zones V-VII provides improved functional outcomes at 4 and 12 weeks and 6 months when compared with static splinting.¹ Another small, prospective, randomized, controlled study comparing postoperative dynamic- versus static- splinting outcomes of patients following extensor tendon repair reported dynamic splinting of simple, complete lacerations of the extensor tendons in zones V and VI. Dynamic splinting provided improved functional outcomes at 4, 6, and 8 weeks but not by 6 months when compared with static splinting.² Limited evidence suggests that LLPS following surgical extensor injury repair may increase range of motion faster than static splinting. However, the treatment benefit is small and the final outcome is similar to that achieved with static splinting. There is insufficient evidence in the published medical literature to demonstrate the safety, efficacy, and long-term outcomes on the use of static progressive stretch and patient-actuated serial stretch devices, as well as low-load prolonged stretch devices for other joints, including but not limited to, the hand, wrist, elbow, shoulder, toes, and knee. ## **Coding Implications** . This clinical policy references Current Procedural Terminology (CPT®). CPT® is a registered trademark of the American Medical Association. All CPT codes and descriptions are copyrighted 2017, American Medical Association. All rights reserved. CPT codes and CPT descriptions are from the current manuals and those included herein are not intended to be all-inclusive and are included for informational purposes only. Codes referenced in this clinical policy are for informational purposes only. Inclusion or exclusion of any codes does not guarantee coverage. Providers should reference the most up-to-date sources of professional coding guidance prior to the submission of claims for reimbursement of covered services. HCPCS Codes considered medically necessary when meeting policy criteria | HCPCS
Codes | Description | |----------------|--| | E1825 | Dynamic adjustable finger extension/flexion device, includes soft interface material | ICD-10-CM Diagnosis Codes that Support Coverage Criteria | 10D 10 Civi Biagnosis codes that support coverage criteria | | | | | |--|---|--|--|--| | ICD-10-CM Code | Description | | | | | M24.541 – M24.549 | Contracture, hand | | | | | M25.641 - M25.649 | Stiffness of hand, not elsewhere classified | | | | | M84.441S | Pathological fracture, right hand, sequela | | | | **Mechanical Stretching Devices for Joint Stiffness and Contracture** | | Devices for Joint Stiffness and Contracture | |---|--| | ICD-10-CM Code | Description | | M84.442S | Pathological fracture, left hand, sequela | | M84.443S | Pathological fracture, unspecified hand, sequela | | M84.444S | Pathological fracture, right finger(s), sequela | | M84.445S | Pathological fracture, left finger(s), sequela | | M84.446S | Pathological fracture, unspecified finger(s), sequela | | S61.001A - S61.459S | Open wound of fingers and hands | | S62.201A - S62.92XS | Fracture of hand | | S63.101A - S63.106S | Unspecified subluxation and dislocation of thumb | | S63.111A - S63.116S | Subluxation and dislocation of metacarpophalangeal joint of | | | thumb | | S63.121A - S63.126S | Subluxation and dislocation of unspecified interphalangeal | | | joint of thumb | | S63.200A - S63.209S | Unspecified subluxation of other finger | | S63.210A - S63.219S | Subluxation of metacarpophalangeal joint of finger | | S63.220A - S63.229S | Subluxation of unspecified interphalangeal joint of finger | | S63.230A - S63.239S | Subluxation of proximal interphalangeal joint of finger | | S63.240A - S63.249S | Subluxation of distal interphalangeal joint of finger | | S63.250A - S63.259S | Unspecified dislocation of other finger | | S63.260A - S63.269S | Dislocation of metacarpophalangeal joint of finger | | S63.270A - S63.279S | Dislocation of unspecified interphalangeal joint of finger | | S63.280A - S63.289S | Dislocation of proximal interphalangeal joint of finger | | S63.290A - S63.299S | Dislocation of distal interphalangeal joint of finger | | S66.001A - S66.009S | Unspecified injury of long flexor muscle, fascia and tendon of | | | thumb at wrist and hand level | | S66.011A - S66.019S | Strain of long flexor muscle, fascia, and tendon of thumb at | | | wrist and hand level | | S66.021A - S66.029S | Laceration of long flexor muscle, fascia, and tendon of thumb | | | at wrist and hand level | | S66.091A - S66.099S | Other specified injury of long flexor muscle, fascia, and | | | tendon of thumb at wrist and hand level | | S66.100A - S66.109S | Unspecified injury of flexor muscle, fascia and tendon of | | | right index finger at wrist and hand level | | S66.110A - S66.119S | Strain of flexor muscle, fascia, and tendon of other and | | | unspecified finger at wrist and hand level | | S66.120A - S66.129S | Laceration of flexor muscle, fascia, and tendon of other and | | | unspecified finger at wrist and hand level | | S66.190A – S66.199S | Other injury of flexor muscle, fascia, and tendon of other and | | | unspecified finger at wrist and hand level | | S66.201A - S66.209S | Unspecified injury of extensor muscle, fascia and tendon of | | 0.000111 0.00000 | thumb at wrist and hand level | | S66.211A - S66.219S | Strain of extensor muscle, fascia and tendon of thumb at wrist | | 0.0001110000000000000000000000000000000 | and hand level | | S66.221A -S66.229S | Laceration of extensor muscle, fascia and tendon of thumb at | | | wrist and hand level | **Mechanical Stretching Devices for Joint Stiffness and Contracture** | ICD-10-CM Code | Description | |---------------------|---| | S66.291A - S66.299S | Other specified injury of extensor muscle, fascia and tendon | | | of thumb at wrist and hand level | | S66.300A - S66.309S | Unspecified injury of extensor muscle, fascia and tendon of | | | other and unspecified finger at wrist and hand level | | S66.310A - S66.319S | Strain of extensor muscle, fascia and tendon of other and | | | unspecified finger at wrist and hand level | | S66.320A - S66.329S | Laceration of extensor muscle, fascia and tendon of other and | | | unspecified finger at wrist and hand level | | S66.390A - S66.399S | Other injury of extensor muscle, fascia and tendon of other | | | and unspecified finger at wrist and hand level | | S66.401A - S66.499S | Injury of intrinsic muscle, fascia and tendon of thumb at wrist | | | and hand level | | S66.500A - S66.599S | Injury of intrinsic muscle, fascia and tendon of other and | | | unspecified finger at wrist and hand level | | S67.00XA - S67.92XS | Crushing injury of wrist, hand and fingers | **HCPCS** Codes considered NOT medically necessary per this policy | HCPCS | Description | | | |-------|--|--|--| | Codes | | | | | E1800 | Dynamic adjustable elbow extension/flexion device, includes soft interface material | | | | E1801 | Static progressive stretch elbow device, extension and/or flexion, with or without range of motion adjustment, includes all components and accessories | | | | E1802 | Dynamic adjustable forearm pronation/supination device, includes soft interface material | | | | E1805 | Dynamic adjustable wrist extension/flexion device, includes soft interface material | | | | E1806 | Static progressive stretch wrist device, flexion and/or extension, with or without range of motion adjustment, includes all components and accessories | | | | E1810 | Dynamic adjustable knee extension/flexion device, includes soft interface material | | | | E1811 | Static progressive stretch knee device, extension and/or flexion, with or without range of motion adjustment, includes all components and accessories | | | | E1812 | Dynamic knee, extension/flexion device with active resistance control | | | | E1815 | Dynamic adjustable ankle extension/flexion device, includes soft interface material | | | | E1816 | Static progressive stretch ankle device, flexion and/or extension, with or without range of motion adjustment, includes all components and accessories | | | | E1818 | Static progressive stretch forearm pronation/supination device, with or without range of motion adjustment, includes all components and accessories | | | | E1830 | Dynamic adjustable toe extension/flexion device, includes soft interface material | | | | E1831 | Static progressive stretch toe device, extension and/or flexion, with or without range of motion adjustment, includes all components and accessories | | | ## **Mechanical Stretching Devices for Joint Stiffness and Contracture** | HCPCS | Description | |-------|--| | Codes | | | E1840 | Dynamic adjustable shoulder flexion/abduction/rotation device, includes soft | | | interface material | | E1841 | Static progressive stretch shoulder device, with or without range of motion | | | adjustment, includes all components and accessories | | Reviews, Revisions, and Approvals | | Approval
Date | |-----------------------------------|-------|------------------| | Policy developed | 09/18 | | #### References - 1. Kitis A, Ozcan RH, Bagdatli D, et al. Comparison of static and dynamic splinting regimens for extensor tendon repairs in zones V to VII. Plast Surg Hand Surg. 2012 Sep;46(3-4):267-71 - 2. Mowlavi A, Burns M, Brown RE. Dynamic versus static splinting of simple zone V and zone VI extensor tendon repairs: a prospective, randomized, controlled study. Plast Reconstr Surg. 2005 Feb;115(2):482-7 - 3. Hayes Medical Technology Directory. Mechanical Stretching Device for the Treatment of Joint Contractures of the Extremities. Feb 2013. Update Jan 2017 - 4. Sameem M, Wood T, Ignacy T, et al. A systematic review of rehabilitation protocols after surgical repair of the extensor tendons in zones V-VIII of the hand. J Hand Ther. 2011 Oct-Dec;24(4):365-72 - 5. Neuhaus V, Wong G, Russo KE, Mudgal CS. Dynamic splinting with early motion following zone IV/V and TI to TIII extensor tendon repairs. J Hand Surg Am. 2012 May;37(5):933-7. - 6. Chester DL, Beale S, Beveridge L, Nancarrow JD, Titley OG. A prospective, controlled, randomized trial comparing early active extension with passive extension using a dynamic splint in the rehabilitation of repaired extensor tendons. J Hand Surg Br. 2002;27(3):283-288. - 7. Giessler GA, Przybilski M, Germann G, Sauerbier M, Megerle K. Early free active versus dynamic extension splinting after extensor indicis proprius tendon transfer to restore thumb extension: a prospective randomized study. J Hand Surg Am. 2008;33(6):864-868 - 8. Glasgow C, Tooth LR, Fleming J, Peters S. Dynamic splinting for the stiff hand after trauma: predictors of contracture resolution. J Hand Ther. 2011;24(3):195-206. - **9.** Larson D, Jerosch-Herold C. Clinical effectiveness of post-operative splinting after surgical release of Dupuytren's contracture: a systematic review. BMC Musculoskelet Disord. 2008 Jul 21;9:104. doi: 10.1186/1471-2474-9-104. - 10. Khandwala AR, Webb J, Harris SB, et al. A comparison of dynamic extension splinting and controlled active mobilization of complete divisions of extensor tendons in zones 5 and 6. J Hand Surg Br. 2000 Apr;25(2):140-6. - 11. Walsh MT, Rinehimer W, Muntzer E et al. Early controlled motion with dynamic splinting versus static splinting for zones III and IV extensor tendon lacerations: a preliminary report. J Hand Ther. 1994 Oct-Dec;7(4):232-6. - 12. Saldana MJ, Choban S, Westerbeck P, Schacherer TG. Results of acute zone III extensor tendon injuries treated with dynamic extension splinting. J Hand Surg Am. 1991 Nov;16(6):1145-50. ## **Mechanical Stretching Devices for Joint Stiffness and Contracture** - 13. Kraaijenga S, van der Molen L, van Tinteren H, et al. Treatment of myogenic temporomandibular disorder: a prospective randomized clinical trial, comparing a mechanical stretching device (TheraBite®) with standard physical therapy exercise. Cranio. 2014 Jul;32(3):208-16 - 14. Jongs RA, Harvey LA, Gwinn T, et al. Dynamic splints do not reduce contracture following distal radial fracture: a randomised controlled trial. J Physiother. 2012;58 (3):173-180. - 15. Lindenhovius AL, Doornberg JN, Brouwer KM, et al. A prospective randomized controlled trial of dynamic versus static progressive elbow splinting for posttraumatic elbow stiffness. J Bone Joint Surg Am. 2012;94(8):694-700. - 16. Griffin M, Hindocha S, Jordan D, et al. Management of Extensor Tendon Injuries. Open Orthop J. 2012; 6: 36–42. - 17. Pace JL, Nasreddine AY, Simoni M, et al. Dynamic Splinting in Children and Adolescents With Stiffness After Knee Surgery. J Pediatr Orthop. 2018 Jan;38(1):38-43