

### **Clinical Policy: Donor Lymphocyte Infusion**

Reference Number: PA.CP.MP.101

Effective Date: 01/18

Last Review Date: 9/29/2021

Coding Implications
Revision Log

#### **Description**

This policy describes the medical necessity requirements for a donor lymphocyte infusion (DLI). DLI is an immune therapy approach to decrease the risk of relapse for many hematological malignancies following allogenic hematopoietic stem cell transplantation (HSCT), or to convert a patient's mixed to full donor chimerism, a state where both donor and recipient stem cells coexist. In this procedure, donor lymphocytes from the original stem cell donor are infused into the patient to cause an immune-mediated graft vs. tumor response. The hematological malignancies treated by DLIs can include, but not limited to, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), lymphomas, multiple myeloma, and myelodysplastic syndrome.

### Policy/Criteria

- I. It is the policy of Pennsylvania Health and Wellness<sup>®</sup> that donor lymphocyte infusion is **medically necessary** following an allogenic HSCT or bone marrow transplant for any of the following indications:
  - A. To decrease the risk of relapse of hematological malignancy;
  - **B.** To convert the recipient stem cells of the donor from mixed to full donor chimerism if there is a concern for relapse. DLI should not be used for the sole purpose of increasing donor chimerism without the risk of relapse.
- **II.** It is the policy of Pennsylvania Health and Wellness that donor lymphocyte infusion for the following are considered **experimental/investigational**:
  - **A.** For the treatment of all other conditions than those specified above;
  - **B.** Genetic modification or ex vivo manipulation of donor lymphocytes;
  - C. In the presence of higher than grade 2 acute graft-versus-host-disease (GvHD);
  - **D.** In the presence of total host chimerism.

### **Background**

In addition to chemotherapy, HSCT has become a mainstream clinical therapy for a variety of hematological malignancies. Even though the anti-tumor effects of HSCT can be durable for some patients, relapse of the original malignancy presents considerable clinical challenges for 40 to 75% of patients who undergo autologous HSCT and 10 to 40% of those who undergo allogenic HSCT. Therefore, salvage therapies to combat the refractory disease are required. DLI is one such post-transplant salvage adoptive immunotherapy.

Donor lymphocyte infusion, otherwise known as buffy coat infusion, was originally described in 1990 by Kolb and colleagues as a treatment protocol for three patients who had relapsed after bone marrow transplantation for CML<sup>2</sup>. In this procedure, mononuclear cells collected by apheresis from the related or unrelated donor who provided the original hematopoietic stem cell graft are infused into the patient to harness the graft vs. tumor effect. While there is some variety in published reports concerning the dose of donor cells infused, Deol and Lum survey several articles and report an effective cellular range of 0.01 to  $8.8 \times 10^8$  T cells/kg.<sup>3</sup>

# CLINICAL POLICY Donor Lymphocyte Infusion



The precise mechanism of action, including the tumor-specific antigens as well as the critical effector cells that mediate the anti-tumor immune response, has not yet been fully elucidated. However, recent evidence suggests that both donor T cells and host-derived immune compartments, including antigen presenting cells and B cells, among others, are critical for facilitating the graft vs. tumor effect of DLI. 1,3,4

In striving to eradicate the tumor cell population from the host, complications may persist in patients treated with DLI. Graft vs. host disease (GvHD), the most common and significant toxicity attributable to DLI, occurs in approximately in 40-60% of patients, according to a range of several published reports. <sup>1,4,5</sup> GvHD ensues when the transplanted donor cells recognize the host as foreign and initiate an immune reaction that usually affects the patient's skin, gastrointestinal tract, and/or liver. <sup>6</sup> However, there is a strong correlation observed with the onset of GvHD and the intended graft vs. tumor effect. The onset of GvHD is independent of the type of hematological malignancy. In a retrospective study, Collins *et al.* observed that of 140 patients treated with DLI for relapsed disease after stem cell transplant, approximately 60% patients present with GvHD; of these, 42/45 patients in complete response of disease developed acute GvHD and 36/41 patients in complete response of disease displayed chronic GvHD. <sup>7</sup> Nevertheless, Carlens et al. determined that the 3 year leukemia free survival is greater for patients who develop chronic GvHD than for those who do not. <sup>8</sup> Therefore, the ultimate goal of DLI is to maximize the graft vs. tumor response while minimizing the complications that arise from the related GvHD.

In addition to GvHD, bone marrow aplasia is another major complication that can occur in 2-5% of patients following DLI. Infection and bleeding are compounding risks associated with the onset of aplasia following DLI. The infusion of subsequent donor stem cells can reverse marrow aplasia.

Since Kolb's initial study describing the utility of DLI, focus has been placed on evaluating the clinical benefit of DLI in the context of treating relapsed CML. Multiple studies have revealed that DLI can establish complete remissions in 70-80% of patients with relapsed CML, and the response is durable in the majority of these cases.<sup>9</sup>

DLI is less effective for achieving remission in patients with relapsing AML following HSCT. According to Deol and Lum, the ability of DLI to induce remission in relapsed AML is approximately 15-20%.<sup>3</sup> However, unlike the observations made for CML, it is often necessary to combine DLI with a chemotherapy regimen to elicit an anti-tumor effect against AML.

Multiple myeloma is another hematological malignancy with the potential to respond to DLI. Among varying reports, the response rate of relapsed multiple myeloma to DLI is approximately 22-52%. The propensity of multiple myeloma patients to receive autologous and not allogenic transplants could have a role in this outcome. NCCN guidelines state that in patients whose disease does not respond to or relapses after allogeneic stem cell grafting may receive DLI to stimulate a beneficial graft-versus-myeloma effect or other myeloma therapies on or off a clinical trial. 18

# CLINICAL POLICY Donor Lymphocyte Infusion



Furthermore, DLI is a treatment possibility for relapsed ALL. However the outcomes for relapsed ALL have been less robust compared to CML and AML. Collins *et al* analyzed outcomes in both retrospective and prospective studies in patients with relapsed ALL treated with chemotherapy and DLI, and found that only 3/44 were disease free.<sup>7</sup>

Lastly, chimerism is an important element that develops after the engraftment of a HSCT. Mixed chimerism is defined when < 90% donor cells are detected, whereas full or complete chimerism is defined as 100% donor cells detected, suggesting completed hematopoietic replacement<sup>12</sup>. One such example of the graft vs. tumor effects observed from the conversion to full chimerism was described by Orisini, in which 4 patients with relapsed multiple myeloma received DLI specifically with CD4<sup>+</sup> T cells. It was observed that 3/4 patients saw a clinical response in the absence of GvHD with complete hematopoietic conversion.<sup>13</sup>

In summary, donor lymphocyte infusion is an effective clinical treatment for an array of relapsed hematological malignancies. For this adoptive immunotherapy, T lymphocytes from the original stem cell donor are infused into the patient with the intent of inducing a graft vs. tumor response.

### **Coding Implications**

This clinical policy references Current Procedural Terminology (CPT®). CPT® is a registered trademark of the American Medical Association. All CPT codes and descriptions are copyrighted 2019, American Medical Association. All rights reserved. CPT codes and CPT descriptions are from the current manuals and those included herein are not intended to be all-inclusive and are included for informational purposes only. Codes referenced in this clinical policy are for informational purposes only. Inclusion or exclusion of any codes does not guarantee coverage. Providers should reference the most up-to-date sources of professional coding guidance prior to the submission of claims for reimbursement of covered services.

| CPT®* | Description                                                                  |
|-------|------------------------------------------------------------------------------|
| Codes |                                                                              |
| 38215 | Transplant preparation of hematopoietic cells; cell concentration in plasma, |
|       | mononuclear, or buffy coat layer                                             |
| 38242 | Allogeneic lymphocyte infusions                                              |
| 86950 | Leukocyte transfusion                                                        |

| HCPCS | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Codes |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S2150 | Bone marrow or blood-derived stem-cells (peripheral or umbilical), allogeneic or autologous, harvesting, transplantation, and related complications; including: pheresis and cell preparation/storage; marrow ablative therapy; drugs, supplies, hospitalization with outpatient follow-up; medical/surgical, diagnostic, emergency, and rehabilitative services; and the number of days of pre- and post-transplant care in the global definition |

## pa health & wellness.

# CLINICAL POLICY Donor Lymphocyte Infusion

ICD-10-CM Diagnosis Codes that Support Coverage Criteria

| ICD-10-CM Code  | Description                                                   |
|-----------------|---------------------------------------------------------------|
| C81.00 - C81.99 | Hodgkin lymphoma                                              |
| C85.10 - C85.99 | Other specified and unspecified types of non-Hodgkin lymphoma |
| C90.00 - C90.02 | Multiple myeloma                                              |
| C91.00 - C91.Z2 | Lymphoid leukemia                                             |
| C92.00 - C92.Z2 | Myeloid leukemia                                              |
| D46.0 - D46.Z   | Myelodysplastic syndrome                                      |
| Z94.81          | Bone marrow transplant status                                 |
| Z94.84          | Stem cells transplant status                                  |

| Reviews, Revisions, and Approvals                                                 | Date      | Approval<br>Date |
|-----------------------------------------------------------------------------------|-----------|------------------|
| References reviewed and updated. Code updates.                                    |           | 11/17            |
| Removed "who has not relapsed" from I.B. Background updated.                      |           |                  |
| References reviewed and updated.                                                  |           |                  |
| Removed "who has not relapsed" from I.B.                                          |           |                  |
| Background updated.                                                               |           |                  |
| References reviewed and updated.                                                  |           |                  |
| References reviewed and updated. Specialist review.                               | 10/2020   | 12/7/2021        |
|                                                                                   |           |                  |
| Description updated. Specified in I.A. that DLI is indicated to reduce the risk   | 9/29/2021 |                  |
| of relapse. Added to I.B. that DLI is intended to convert recipient cells from    |           |                  |
| mixed to full chimerism, if there is a risk of relapse. Added to II. "higher than |           |                  |
| grade 2 acute graft-versus-host-disease (GvHD)" and "total host chimerism."       |           |                  |
| Removed not medically necessary indication from section II. of a second DLI       |           |                  |
| when benefits were not noted from the first. References reviewed and updated.     |           |                  |
| Specialist review. Replaced "member" with "member/enrollee" in all                |           |                  |
| instances.                                                                        |           |                  |

#### References

- 1. Negrin RS. Biology of the graft-versus tumor effect following hematopoietic cell transplantation. UpToDate website. <a href="www.uptodate.com">www.uptodate.com</a>. Published April 14, 2020. Accessed October 6, 2020.
- 2. Kolb H J, Mittermüller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. *Blood*. 1990 Dec 15;76(12):2462-5.
- 3. Deol A, Lum LG. Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. *Cancer Treat Rev.* 2010 Nov;36(7):528-38.
- 4. Frey NV, Porter DL. "Graft-versus-host disease after donor leukocyte infusions: presentation and management. Best Pract Res Clin Haematol. 2008 Jun;21(2):205-22.
- 5. Luznik L, Fuchs EJ. Donor lymphocyte infusions to treat hematologic malignancies in relapse after allogeneic blood or marrow transplantation. Cancer Control. 2002 MarApr;9(2):123-37.

### **CLINICAL POLICY**

### **Donor Lymphocyte Infusion**



- 6. Chao, NJ. Clinical manifestations, diagnosis, and grading of acute graft- versus-host disease. In: UpToDate website. <a href="www.uptodate.com">www.uptodate.com</a>. Published July 3, 2019. Accessed October 6, 2020.
- 7. Collins RH, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. *J Clin Oncol*. 1997 Feb;15(2):433-44.-
- 8. Carlens S, Remberger M, Aschan J, Ringdén O. The role of disease stage in the response to donor lymphocyte infusions as treatment for leukemic relapse. *Biol Blood Marrow Transplant*. 2001;7(1):31-8.
- 9. Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. *Bone Marrow Transplant*. 2008 Mar;41(5):483-93.
- 10. Salama M, Nevill T, Marcellus D et al. Donor leukocyte infusions for multiple myeloma. *Bone Marrow Transplant*. 2000 Dec;26(11):1179-84.
- 11. Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. *Bone Marrow Transplant*. 2004 Jul;34(1):1-12.
- 12. Lokhorst HM, Schattenberg A, Cornelissen JJ, et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. *J Clin Oncol*. 2000 Aug;18(16):3031-7.
- 13. Orsini E, Alyea EP, Chillemi A, et al. Conversion to full donor chimerism following donor lymphocyte infusion is associated with disease response in patients with multiple myeloma. *Biol Blood Marrow Transplant*. 2000;6(4):375-86..
- 14. Negrin RS. Immunotherapy for the prevention and treatment of relapse following hematopoietic cell transplantation. UpToDate website. <a href="www.uptodate.com">www.uptodate.com</a>. Published October 2, 2020. Accessed October 6, 2020.
- 15. Clinical Practice Guidelines in Oncology. Acute Lymphoblastic Leukemia Version 1.2020. National Comprehensive Cancer Network (NCCN) website <a href="https://www.nccn.org">https://www.nccn.org</a>. Published January 15, 2020. Accessed October 6, 2020.
- 16. NCCN Guidelines in Clinical Guidelines in Oncology. Acute Myeloid Leukemia Version 4.202. National Comprehensive Cancer Network (NCCN) website <a href="www.nccn.org">www.nccn.org</a>. Published September 28, 2020. Accessed October 6, 2020.
- 17. NCCN Guidelines in Clinical Practice Guidelines in Oncology. Chronic Myeloid Leukemia Version 2.2021. National Comprehensive Cancer Network (NCCN) website. www.nccn.org. Published August 28, 2020. Accessed October 6, 2020.
- 18. NCCN Guidelines in Clinical Guidelines in Oncology. Multiple Myeloma Version 0.2021. National Comprehensive Cancer Network (NCCN) website. www.nccn.org. Published September 9, 2020.
- 19. NCCN Guidelines in Clinical Guidelines in Oncology. Myelodysplastic Syndromes Version 1.2021. National Comprehensive Cancer Network (NCCN) website <a href="www.nccn.org">www.nccn.org</a>. Published September 11, 2020. Accessed October 6, 2020.
- 20. Guièze R, Damaj G, Pereira B, et al. Management of Myelodysplastic Syndrome Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation: A Study by the French Society of Bone Marrow Transplantation and Cell Therapies. *Biol Blood Marrow Transplant*. 2016 Feb;22(2):240-247.

### pa health & wellness.

## **CLINICAL POLICY Donor Lymphocyte Infusion**

- 21. Toprak SK. Donor lymphocyte infusion in myeloid disorders. *Transfus Apher Sci.* 2018 Apr;57(2):178-186. doi: 10.1016/j.transci.2018.04.018. Epub 2018 Apr 18.
- 22. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. *Blood*. 2017 Mar 30;129(13):1753-1762. doi: 10.1182/blood-2016-06-724500. Epub 2017 Jan 17.
- 23. Tsirigotis P, Byrne M, Schmid C, et al. Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. *Bone Marrow Transplant*. 2016 Nov;51(11):1431-1438. doi: 10.1038/bmt.2016.167. Epub 2016 Jun 13.
- 24. Larson RA. Treatment of relapsed or refractory acute myeloid leukemia. UpToDate website. <a href="https://www.uptodate.com">www.uptodate.com</a>. Published November 5, 2019. Accessed October 6, 2020.
- 25. Negrin RS. Hematopoietic cell transplantation in chronic myeloid leukemia. UpToDate webstie. www.uptodate.com. Published May 2, 2019. Accessed October 6, 2020.
- 26. Rajkumar AV. Multiple myeloma: Use of allogeneic hematopoietic cell transplantation. UpToDate website. <a href="www.uptodate.com">www.uptodate.com</a>. Published April 8, 2020. Accessed October 6, 2020.